数理・データサイエンス e-learning教材(開講部局:数理・情報教育研究センター)全18コースをUTokyo OCWで開講

こんにちは。
大学総合教育研究センターUTokyo OCWチームです。

このたび、UTokyo OCWの姉妹サイト『UTokyo OpenCourseWare extra』(UTokyo OCWx)にて公開しているコンテンツの一部をUTokyo OCWにて公開しました。

今回、UTokyo OCWで公開したのは数理・情報教育研究センターが開講している数理・データサイエンスに関する公開講義の18コース。一つの講義がトピックごとに5分〜60分程度と短く分かれており、学び直しや隙間時間での学習がしやすくなっています。

ぜひ、珠玉の講義を自身の学びに活用してください。

複素解析学I

講師:平地健吾教授
講義概要:複素関数論は数学の様々な局面で使われるきわめて強力な理論である。本講義では複素数平面、複素関数の微分、複素関数の積分とコーシーの定理といった複素関数論の基礎について解説を行う。

文科系のための線形代数・解析II

講師:藤堂眞治教授・松尾泰教授・藤原毅夫教授
講義概要:「文科系のための線形代数・解析I」に引き続き、経済学や統計学、データ科学などにおいて必要とされる線形代数、解析の基礎を学ぶ。線形回帰、二変数関数の微積分、基本的な最適化手法などを理解し、簡単な問題に応用できるようになることを目標とする。講義とMATLABを用いた演習を並行して進めることで実践で役立つ理解を目指す。

確率過程論(数理手法VI)

講師:荻原哲平准教授
講義概要:時間とともに変化する不確実な現象を記述し理解するには、確率過程論が重要な道具として用いられる。この講義では数理手法IVに続き、離散時間の確率過程論の講義を行った後、連続時間の確率過程の理論について講義を行う。また、ファイナンスへの応用として、ブラック・ショールズ・マートンによるオプション価格理論を扱う。

文科系のための線形代数・解析I

講師:藤堂眞治教授・松尾泰教授・藤原毅夫教授
講義概要: 経済学や統計学、データ科学などにおいて必要とされる線形代数の基礎を学ぶ。二次元・三次元の線形写像と行列、固有値分解などを理解し、簡単な問題に応用できるようになることを目標とする。講義とMATLABを用いた演習を並行して進めることで実践で役立つ理解を目指す。

メディアプログラミング入門

講師:山肩洋子准教授
講義概要:「Pythonプログラミング入門」を履修済みの学生、あるいはそれと同等以上のプログラミング力を持っている学生を対象に、時系列データや音、テキスト、画像といった様々なメディアをコンピュータで処理するための基礎的なプログラミングを学ぶ。 拡張ライブラリやWebAPIなどを活用し、実際にプログラムを動かしながらその振る舞いを直感的に学ぶことで、Pythonを使ったメディア処理への理解と興味を深めることを目的とする。

計算機実験I

講師:藤堂眞治教授
講義概要: 理論・実験を問わず、学部〜大学院〜で必要とされる現代的かつ普遍的な計算機の素養を身につける。1. 計算機実験のための環境整備 2. 数値計算の基礎 3. 常微分方程式の解法 4. 行列演算とライブラリ 5. 連立方程式の解法 6. 行列の対角化 7. 疎行列に対する反復解法 8. 特異値分解と最小二乗法

最適化手法(数理手法III)

講師:寒野善博教授
講義概要:最適化とその応用について講述する。最適化(数理計画)とは、意思決定のための数理手法の一つである。最適化では、与えられた条件を満たす解のうち、ある関数を最小(または最大)にするものを求める。工学における多くの問題が、このような最適化問題として定式化できる。この講義では、最適化におけるいくつかの基本的な問題を取り上げ、それらがもつ性質と解法を説明するとともに、それらの応用を紹介する。

確率論(数理手法IV)※既公開

講師:楠岡成雄特任教授
講義概要: 時間とともに変化する不確実な現象を記述し理解するには、確率過程論が重要な道具として用いられる。この講義では離散時間の確率過程に関しての講義を行う。 この講義では、数学的に厳密な議論は行わず、確率過程論(特にマルチンゲール)のアイデアを中心として直観を重視した講義を行う。特に前半では確率空間が有限集合である場合を取り扱う。測度論、積分論の知識は前提としない。

工学のための現代数学入門(数理手法V)

講師:藤原毅夫特任教授
講義概要: 理工系の専門分野の学習では、しばしば現代数学の言葉や概念が顔を出す。そのときに困らないためには、新しい概念の在処を知っているだけでも大変役に立つ。本講義では、今後現れるかもしれない現代数学の諸相を、数学非専門の立場から説き起こす。連続と位相・微分形式と多様体上の微積分・群などを扱う。

確率過程論(数理手法VI)

講師:楠岡成雄特任教授
講義概要: 時間とともに変化する不確実な現象を記述し理解するには、確率過程論が道具として用いられる。この講義では数理手法IVに続き、連続な確率過程の理論について講義を行う。

時系列解析(数理手法Ⅶ)

講師:北川源四郎特任教授
講義概要: 時間とともに変動する現象を記録したデータが時系列である。時系列に基づき、複雑な現象を理解し、予測、制御や意思決定を行うための方法が時系列解析である。この講義では、時系列のモデリングのための前処理や特徴の可視化、統計的モデリングの方法、線形・定常時系列モデル、状態空間モデルおよび非線形・非ガウス型モデルについて、実際の問題への応用含めつつモデリングの方法を中心に解説し、現実の問題に対応して適切なモデリングができるようになることを目標とする。

データ駆動科学の数理(数理手法Ⅷ)

講師:島田尚准教授
講義概要: 主に経済・社会系に関する最近の data-driven な研究を紹介し、それらを理解するための数理手法を解説する。研究を進めるのに重要なこれらの数理手法の理解の糸口になるよう講義をする立場で努力する。

時系列解析(数理手法Ⅶ)

講師:松尾宇泰教授
講義概要: 方程式の求解や、微分・積分などの計算は、手計算の形でこれまで十分経験していることと思う。しかし、天気予報、航空機の設計、物理現象のシミュレーションなど実際的な場面で必要とされる計算は、大規模かつ複雑で手計算ではとても実行できない。このような場合に使われるのが計算機を使った数値計算である。これは大変強力な方法であるが限界もあり、その性質をわきまえずに使うと思わぬ大怪我をする可能性もある。本講義では数値計算の方法と性質について、実用面に留意しながら解説する。本講義の履修には計算機プログラミングができることが望ましい。

統計データ解析I

講師:小池祐太准教授
講義概要: ビッグデータの時代と言われている。近年、データの計測およびストレージ技術の発達とともに、大規模データから適切に情報抽出し、それを意思決定に活用することが必須のリテラシーとなっている。いっぽうデータの形式と対応する解析法の変化は著しく、新しい方法を正しく利用するために、普遍的な統計科学の原理を理解することが重要である。基礎となる統計数理とともに、具体的な統計解析手法とその運用を、統計ソフトウエアによるデータ解析実習を通じて習得する。

統計データ解析II

講師:小池祐太准教授
講義概要: 統計データ解析Ⅱでは、統計ソフトウエアRの説明の後、高次元大規模データに潜む相関構造を発見し計量する多変量解析、および時系列データの基本的な解析法を学ぶ。統計手法の運用とデータハンドリングを実習することに加え、微分積分学、線型代数学等の前期課程数学と連携し、数理科学的側面を意識しながら、実験を介して統計手法の合理性と体系を感得する。

コンピュータシステム概論

講師:小林克志特任准教授
講義概要: コンピュータシステムを利用した情報サービスの知識はあらゆる分野で求められている。 本講義では、情報サービスの提供に必要な知識・スキルに加えてそれらの獲得方法を学ぶ。 具体的には、Web サービスの提供を想定し、その実現に必要な知識・技術を解説する。 併せて、具体的なサービス構築を通じ知識・技術の活用に加え、それらの獲得方法を実践的に体得する。 課題発表の時間に学生が設計・構築したサービスのデモをおこない、学生同士で評価する。

データマイニング入門

講師:森純一郎准教授
講義概要: ビックデータ分析技術は情報処理技術を学ぶ上で重要となっている。本講義では、データ分析・データマイニングの基礎について学ぶとともに演習を通して実際にデータを分析するプロセスを学ぶ。特に、前期課程の「データマイニング入門」講義のさらに発展的な内容を学習することで、後期課程や大学院におけるデータサイエンス、人工知能、機械学習、自然言語処理などの関連講義の基礎となる知識を習得することを目標とする。

Special Lecture at Utokyo “Linear Algebra”

講師:Professor Gilbert Strang (MIT)